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Effective therapy of cancer requires elimination of 
tumor cells through programmed cell death or 
apoptosis, which is a highly regulated process that 
avoids the unwanted inflammatory response when cells 
die. Morphologically, the manifestation of apoptosis is 
similar across various cell types and species, and is 
observed as a series of cellular changes that begin with 
chromatin condensation, followed by nuclear 
fragmentation, cell shrinkage, blebbing and finally 
phagocytosis

1,2
.  When  tumor  cells  are  exposed  to 

therapeutic agents, the damage to cellular organelles or 
macromolecules creates substantial intracellular 
stress, which triggers the onset of the apoptotic cell 
death program. DNA is a well-known target of several 
classes of antitumor agents, such as anthracyclines, 
alkylating agents, platinum-based drugs and ionizing 
radiation, and the stress induced by DNA damage 
results in a cascade of signaling events, which result in 
modulation of a large number of proteins, including 
enzymes and transcription factors that coordinate the 

unexpected novel function of wild-type p53 that 
correlates with greater resistance of the tumor cell as 
compared to cells harboring mutant p53. 

Apart from functional loss of p53 and other pro- 
apoptotic proteins, a host of other mechanisms can also 
attenuate the apoptotic stimuli, and these can generally 
be grouped into failure of the surveillance system to 
detect DNA dmage, downregulation of pro-apoptotic 
regulatory pathways and upregulation of survival 
pathways

6,7
. Such negative alterations upstream in the 

tumor cell can impact both the extrinsic (involving 
caspase-8) and intrinsic (involving caspase-9) 
pathways of apoptosis, and this can create an 
unfavorable balance between pro-survival and pro- 
death signals toward surival. This understanding has 
spurred the rational development of therapeutic options 
that are designed to directly activate the cell death 
program, and some of these are shown in Figure 1 and 
discussed below. 
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cell death program. One such protein is the tumor 
suppressor p53, which has a central role in apoptosis, 
but its mutation in about 50% of all cancers inhibits 
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suppresses the apoptotoic stimuli . This impairment in 
p53 function essentially renders tumor cells resistant to 
therapeutic antitumor agents, including the kinase 
targeted inhibitors, such as imatinib (Gleevec) and 
gefitinib (Iressa)

4,5
. 

It is important to note that mutation of p53 is not a 
prerequisite for rendering it ineffective as an inducer of 
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apoptosis. Indeed, several cancers, such as 
mesothelioma, renal cell carcinoma and non-small cell 
lung cancer, predominantly express wild-type p53, but 
are generally resistant to a variety of therapeutic 
strategies

6
.  Moreover,  such  refractory  cancers  may 

express the phenomenon of a gain-of-resistance 
phenotype, which is directly attributable to wild-type 
p53

6
. This is contrary to expectations, and reveals an 

Figure 1: Stimulating the apoptotic pathway with novel 
agents in development 

 
An obvious downstream target is procaspase-3 to 

generate the active caspase-3, which not only is the 
terminal executioner protein, but also is common to both 
the extrinsic and intrinsic pathways of apoptosis. 
Moreover, procaspase-3 is overexpressed in a variety 
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of tumor types
8
, and agents such as PAC-1 have been 

identified for their potential to take advantage of this 
overexpression and generate active caspase-3 
intracellularly   in   effective   quantities

9
.   However, 

overexpression of inhibitors of apoptosis (IAPs), 
particular the more potent XIAP and survivin, may 
downregulate caspase activities. In this case antisense 
targeting of IAPs with AEG-35156 and LY-2181308 can 
be effective at both preclinical and clinical levels

10,11
. The 

IAPs are usually negatively regulated endogenously by 
SMAC/DIABLO, and consequently SMAC/DIABLO 
mimetics (e.g., AT-406, GDC-0917 and TL-32711) have 
entered clinical trials to take advantage of their capacity 
to inactivate the IAPs and restore caspase activity

11,12
. 

A major apoptotic target upstream of caspases is 
p53. In its wild-type state, p53 can be inactivated by 
overexpression of the p53-binding MDM2 protein. To 
inhibit this binding and reactivate p53, RITA and Nutlin-3 
have been developed as prototype drugs, which are 
presently undergoing preclinical and clinical 
development, respectively

13,14
. Mutant p53, particularly 

the more problematic gain-of-function mutants, has 
also received attention, with several agents in 
development to enforce conformational change and 
rescue wild-type p53 function. Clinical trials of the small 
molecule PRIMA-1/Met have been intitiated, and 
others, such as MIRA-1 and STIMA-1 are in preclinical 
development to affect the rescue

15-17
. 

Between p53 and caspases along the intrinsic 
apoptotic pathway are a number of proteins related to 
the BCL-2 family, members of which have important 
roles in apoptotis, having either pro-apoptotic or anti- 
apoptotic effects. Some members are in fact targets of 
wild-type p53 to promote the apoptotic process, with the 
proapoptotic targets BAX, NOXA, PUMA nad BID 
upregulated and antiapoptotic target BCL-2 
downregulated

18,19
.   However,   in   absence   of   p53 

function, antiapoptotic members of the BCL-2 family 
can be targeted to tip the balance in favor of apoptosis. 
Antisense (oblimersen and ASO-15999) and small 
molecule inhibitors and antagonists (AT-101, obatoclax 
and navitoclax), for instance, attenuate the effects of 
BCL-2 and related family members to prime tumor cells 
for  apoptosis

20-23
.  In  a  similar  manner,  the  extrinsic 

pathway has also been targeted to activate apoptosis 
by stimulating the extracellular TNF-R1, DR4/5 or Fas 
receptor with cognitive ligands TNF-á, TRAIL or FasL 
ligands, respectively, using adenoviral vectors to 
mediate overexpression. The vector Fasaret encoding 
FasL is such an example, although the synthetic 
hexameric FasL ligand APO010 has also been effective 
in  activating  the  Fas  receptor

24
. Agonistic  antibodies, 

such as apomab, mapatumumab and lexatumumab, on 
the other hand, have been developed to directly activate 
the DR4 and DR5 death receptors

25
. 

It is clear that apoptosis is finally receiving due 

attention as a means to advance cancer chemotherapy 
in a more rational manner. Many of the strategies 
discussed here are still in investigational phase, either 
preclinically or clinically, but the overall approach holds 
much promise and is likely to lead to more effective 
therapeutic options for care of the cancer patient in the 
near future. 
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